
lunar (8) dkms.8.gz

Provided by: dkms_3.0.9-1_all

NAME

 dkms - Dynamic Kernel Module Support

SYNOPSIS

 dkms [action] [options] [module/module-version] [/path/to/source-tree]
 [/path/to/tarball.tar] [/path/to/driver.rpm]

DESCRIPTION

 dkms is a framework which allows kernel modules to be dynamically built for each kernel on
 your system in a simplified and organized fashion.

ACTIONS

 add [module/module-version] [/path/to/source-tree] [/path/to/tarball.tar]

 Adds a module/module-version combination to the tree for builds and installs. If
 module/module-version, -m module/module-version, or -m module -v version are passed as
 options, this command requires source in /usr/src/<module>-<module-version>/ as well
 as a properly formatted dkms.conf file. If /path/to/source-tree is passed as an
 option, and source-tree contains a dkms.conf file, it will copy /path/to/source-tree
 to /usr/src/module-module-version. If /path/to/tarball.tar is passed, this command

Menu

name

synopsis

description

actions

options

original modules

dkms.conf

dkms.conf overrides

/etc/dkms/framework.conf

dkms_autoinstaller

author

webpage

https://manpages.ubuntu.com/
https://manpages.ubuntu.com/man8
https://manpages.ubuntu.com/manpages.gz/lunar/man8/dkms.8.gz
https://launchpad.net/ubuntu/lunar/+package/dkms
https://bugs.launchpad.net/ubuntu/+source/dkms/+filebug-advanced
https://manpages.ubuntu.com/file:/usr/src/
https://manpages.ubuntu.com/

 behaves like the ldtarball command.

 remove [module/module-version] [-k kernel/arch] [--all]

 Removes a module/version or module/version/kernel/arch combination from the tree. If
 the module is currently installed, it first uninstalls it and if applicable, will
 replace it with its original_module. Use the --all option in order to remove all
 instances for every kernel at once.

 build [module/module-version] [-k kernel/arch] [--force]

 Builds the specified module/version combo for the specified kernel/arch. If the -k
 option is not specified it builds for the currently running kernel and arch. All
 builds occur in the directory /var/lib/dkms/<module>/<module-version>/build/. If the
 module/module-version combo has not been added, dkms will try to add it, and in that
 case build can take the same arguments that add can. If the module is already built,
 it will not be rebuilt again by default, and the --force option should be used to
 override this.

 unbuild [module/module-version] [-k kernel/arch] [--all]

 Undoes the build for a module/version or module/version/kernel/arch combination from
 the tree. If the module is currently installed, it first uninstalls it and if
 applicable, will replace it with its original_module. Finally all binary kernel
 modules are removed. Use the --all option in order to remove all instances for every
 kernel at once.

 install [module/module-version] [-k kernel/arch] [--force] [/path/to/driver.rpm]

 Installs a built module/version combo onto the kernel it was built for. If the kernel
 option is not specified it assumes the currently running kernel. If the module has
 not been built, dkms will try to build it. If the module has not been added, dkms
 will try to add it. In both cases, the install command can then take the same
 arguments as the build or add commands. If the module is already installed, it will
 not be reinstalled again by default, and the --force option should be used to override
 this. If you pass a .rpm file, dkms will try to install that file with rpm -Uvh , and
 it will perform an autoinstall action to be sure that everything is built for your
 kernel if the RPM installed successfully.

 uninstall [module/module-version] [-k kernel/arch] [--all]

 Uninstalls an installed module/module-version combo from the kernel/arch passed in the
 -k option, or the current kernel if the -k option was not passed. Use the --all option
 in order to uninstall all instances for every kernel at once. After uninstall
 completion, the driver will be left in the built state. To completely remove a
 driver, the remove action should be utilized.

 match [--templatekernel kernel/arch] [-k kernel/arch]

 Match installs modules onto the specified kernel by looking at the configuration of
 the specified templatekernel. Every module that is installed on the templatekernel

 within dkms is then installed on that specified kernel.

 mktarball [module/module-version] [-k kernel/arch] [--archive /path/to/tarball.tar]
 [--source-only] [--binaries-only]

 Creates a tarball archive for the specified module/version of all files in the DKMS
 tree for that module/version combination. This includes the source and any built
 modules for kernels in the tree (as specified). Otherwise, you can specify a singular
 kernel to archive only, or multiple kernels to archive (-k kernel1/arch1 -k
 kernel2/arch2). Optionally, you can use --archive to specify the file that you would
 like to save this tarball to. You can also specify --binaries-only if you want the
 resultant tarball not to include the module source. Likewise, --source-only can be
 used to specify that no prebuilt binaries should be included in the tarball. In
 general, mktarball is great for systems management purposes as you can build your
 driver on just one system and then use ldtarball on all of your other systems to get
 the same built modules loaded without having to wait for anything to compile.

 ldtarball [/path/to/tarball.tar] [--force]

 This takes a tarball made from the mktarball command and loads it into your DKMS tree.
 This will leave any newly added modules in the built state and dkms install should
 then be called to install any of them. If files already exist where ldtarball is
 attempting to place them, it will warn and not copy over them. The --force option
 should be used to override this.

 status [module/module-version] [-k kernel/arch]

 Returns the current status of modules, versions and kernels within the tree as well as
 whether they have been added, built or installed. Status can be shown for just a
 certain module, a certain kernel, a module/version combination or a
 module/version/kernel combination.

 autoinstall

 Attempt to install the latest revision of all modules that have been installed for
 other kernel revisions. dkms_autoinstaller is a stub that uses this action to perform
 its work.

OPTIONS

 -m <module>/<module-version>
 The name of the module and module version you want to operate on. The -m part of
 this option is optional, and can be omitted in virtually all circumstances.

 -v <module-version>
 The version of the module to execute the specified action upon. This option only
 has to be specified if you pass a -m option without a <module-version> component of
 its own.

 -k <kernel-version>/<arch>
 The kernel and arch to perform the action upon. You can specify multiple kernel
 version/arch pairs on the command line by repeating the -k argument with a
 different kernel version and arch. However, not all actions support multiple
 kernel versions (it will error out in this case). The arch part can be omitted,
 and DKMS will assume you want it to be the arch of the currently running system.

 -a, --arch
 The system architecture to perform the action upon. It is optional if you pass it
 as part of the -k option. If not specified, it assumes the arch of the currently
 running system (`uname -m`). You can specify multiple arch parameters on the same
 command line by repeating the -a argument with a different arch name. When multiple
 architectures are specified, there must be a 1:1 relationship between -k arguments
 to -a arguments. DKMS will then assume the first -a argument aligns with the first
 -k kernel and so on for the second, third, etc.

 For example, if you were to specify: -k kernel1 -k kernel2 -a i386 -k kernel3 -a
 i686 -a x86_64, DKMS would process this as: kernel1-i386, kernel2-i686,
 kernel3-x86_64.

 -q, --quiet
 Quiet.

 -V, --version
 Prints the currently installed version of dkms and exits.

 -c <dkms.conf-location>
 The location of the dkms.conf file. This is needed for the add action and if not
 specified, it is assumed to be located in /usr/src/<module>-<module-version>/. See
 below for more information on the format of dkms.conf.

 --config <kernel-.config-location>
 During a build this option is used to specify an alternate location for the kernel
 .config file which was used to compile that kernel. Normally, dkms uses the Red Hat
 standard location and config filenames located in /usr/src/linux-<kernel>/configs/.
 If the config for the kernel that you are building a module for is not located here
 or does not have the expected name in this location, you will need to tell dkms
 where the necessary .config can be found so that your kernel can be properly
 prepared for the module build.

 --archive <tarball-location>
 This option is used during a ldtarball action to specify the location of the
 tarball you wish to load into your DKMS tree. You only have to specify the
 --archive part of this option if <tarball-location> does not already exist as a
 file.

 --templatekernel <kernel-version>
 This option is required for the action: match. Match will look at the
 templatekernel specified and install all of the same module/version combinations on
 the other kernel.

https://manpages.ubuntu.com/file:/usr/src/
https://manpages.ubuntu.com/file:/

 --force
 This option can be used in conjunction with ldtarball to force copying over of
 extant files.

 --binaries-only
 This option can be used in conjunction with mktarball in order to create a DKMS
 tarball which does not contain the source for the module within it. This can be
 helpful in reducing the size of the tarball if you know that the system which this
 tarball will be loaded upon already has the source installed. In order to load a
 tarball made as binaries-only you must have the module source in that systems DKMS
 tree. If you do not, DKMS will refuse to load a binaries-only tarball.

 --source-only
 This option can be used in conjunction with mktarball but do not want the tarball
 you create to have any prebuilt modules within it, passing this option will keep
 its internal DKMS tarball from containing any prebuilt modules.

 --all This option can be used to automatically specify all relevant kernels/arches for a
 module/module-version. This can be used for things like remove, unbuild and
 uninstall. This saves the trouble of having to actually specify -k kernel1 -a arch1
 -k kernel2 -a arch2 for every kernel you have built your module for.

 --no-depmod
 This option prevents DKMS from running the depmod command during install and
 uninstall which will avoid (re)calculating module dependencies and thereby save
 time.

 --modprobe-on-install
 This option executes modprobe on the modules upon successful installation.

 --kernelsourcedir <kernel-source-directory-location>
 Using this option you can specify the location of your kernel source directory.
 Most likely you will not need to set this if your kernel source is accessible via
 /lib/modules/$kernel_version/build.

 --directive <"cli-directive=cli-value">
 Using this option, you can specify additional directives from the command line. The
 --directive option can be used multiple times on the same command-line to specify
 multiple additional command line directives.

 --rpm_safe_upgrade
 This flag should be used when packaging DKMS enabled modules in RPMs. It should be
 specified during both the add and remove actions in the RPM spec to ensure that
 DKMS and RPM behave correctly in all scenarios when upgrading between various
 versions of a dkms enabled module RPM package.

 --dkmstree path/to/place
 Provides a destination tree for building and installing modules to. Useful in cases
 that you don't want to contaminate a system when using solely for building.

 --sourcetree path/to/place

https://manpages.ubuntu.com/file:/lib/modules/

 Provides a location to build a DKMS package from. Useful for systems that you may
 not have root access, but would still like to be able to build DKMS packages.

 --installtree path/to/place
 Provides a location to place modules when a dkms install command is issued.

 -j number
 Run no more than number jobs in parallel; see the -j option of make(1). Defaults
 to the number of CPUs in the system, detected by nproc(1). Specify 0 to impose no
 limit on the number of parallel jobs.

ORIGINAL MODULES

 During the first install of a module for a <kernelversion>, dkms will search
 /lib/modules/<kernelversion> for a pre-existing module of the same name. If one is found,
 it will automatically be saved as an "original_module" so that if the newer module is
 later removed, dkms will put the original module back in its place. Currently, DKMS
 searches for these original modules with first preference going to modules located in
 /lib/modules/<kernelversion>/updates/ followed by $DEST_MODULE_LOCATION (as specified in
 dkms.conf). If one cannot be found in either location, a find will be used to locate one
 for that kernel. If none are found, then during a later uninstall, your kernel will not
 have that module replaced.

 If more than one is found, then the first one located (by preference indicated above) will
 be considered the "original_module". As well, all copies of the same-named module will be
 removed from your kernel tree and placed into
 /var/lib/dkms/<module>/original_module/$kernelver/collisions so that they can be
 manually accessible later. DKMS will never actually do anything with the modules found
 underneath the /collisions directory, and they will be stored there until you manually
 delete them.

DKMS.CONF

 When performing an add , a proper dkms.conf file must be found. A properly formatted conf
 file is essential for communicating to dkms how and where the module should be installed.
 While not all the directives are required, providing as many as possible helps to limit
 any ambiguity. Note that the dkms.conf is really only a shell-script of variable
 definitions which are then sourced in by the dkms executable (of the format,
 DIRECTIVE="directive text goes here"). As well, the directives are case-sensitive and
 should be given in ALL CAPS.

 It is important to understand that many of the DKMS directives are arrays whose index
 values are tied together. These array associations can be considered families, and there
 are currently three such families of directive arrays. MAKE[#] and MAKE_MATCH[#] make up
 one family. PATCH[#] and PATCH_MATCH[#] make up the second family. The third and largest
 family consists of BUILT_MODULE_NAME[#], BUILT_MODULE_LOCATION[#], DEST_MODULE_NAME[#],
 DEST_MODULE_LOCATION[#] and STRIP[#]. When indexing these arrays when creating your
 dkms.conf, each family should start at index value 0.

https://manpages.ubuntu.com/man1/make.1.html
https://manpages.ubuntu.com/man1/nproc.1.html
https://manpages.ubuntu.com/file:/lib/modules/
https://manpages.ubuntu.com/file:/lib/modules/

 MAKE[#]=
 The MAKE directive array tells DKMS which make command should be used for building
 your module. The default make command should be put into MAKE[0]. Other entries in
 the MAKE array will only be used if their corresponding entry in MAKE_MATCH[#]
 matches, as a regular expression (using grep -E), the kernel that the module is
 being built for. Note that if no value is placed in MAKE_MATCH[#] for any MAKE[#]
 where # > 0, then that MAKE directive is ignored. MAKE_MATCH[0] is optional and if
 it is populated, it will be used to determine if MAKE[0] should be used to build
 the module for that kernel. If multiple MAKE_MATCH directives match against the
 kernel being built for, the last matching MAKE[#] will be used to build your
 module. If no MAKE directive is specified or if no MAKE_MATCH matches the kernel
 being built for, DKMS will attempt to use a generic MAKE command to build your
 module.

 KERNELRELEASE will be automatically appended to MAKE[#]. If you want to suppress
 this behavior, you can quote the make command: 'make'.

 MAKE_MATCH[#]=
 See the above entry on MAKE[#] directives. This array should be populated with
 regular expressions which, when matched against the kernel being built for, will
 tell DKMS to use the corresponding make command in the MAKE[#] directive array to
 build your module.

 BUILT_MODULE_NAME[#]=
 This directive gives the name of the module just after it is built. If your DKMS
 module package contains more than one module to install, this is a required
 directive for all of the modules. This directive should explicitly not contain any
 trailing ".o" or ".ko". Note that for each module within a dkms package, the
 numeric value of # must be the same for each of BUILT_MODULE_NAME,
 BUILT_MODULE_LOCATION, DEST_MODULE_NAME and DEST_MODULE_LOCATION and that the
 numbering should start at 0 (eg. BUILT_MODULE_NAME[0]="qla2200"
 BUILT_MODULE_NAME[1]="qla2300").

 BUILT_MODULE_LOCATION[#]=
 This directive tells DKMS where to find your built module after it has been built.
 This pathname should be given relative to the root directory of your source files
 (where your dkms.conf file can be found). If unset, DKMS expects to find your
 BUILT_MODULE_NAME[#] in the root directory of your source files. Note that for
 each module within a dkms package, the numeric value of # must be the same for each
 of BUILT_MODULE_NAME, BUILT_MODULE_LOCATION, DEST_MODULE_NAME and
 DEST_MODULE_LOCATION and that the numbering should start at 0 (eg.
 BUILT_MODULE_LOCATION[0]="some/dir/" BUILT_MODULE_LOCATION[1]="other/dir/").

 DEST_MODULE_NAME[#]=
 This directive can be used to specify the name of the module as it should be
 installed. This will rename the module from BUILT_MODULE_NAME[#] to
 DEST_MODULE_NAME[#]. This directive should explicitly not contain any trailing
 ".o" or ".ko". If unset, it is assumed to be the same value as
 BUILT_MODULE_NAME[#]. Note that for each module within a dkms package, the numeric
 value of # must be the same for each of BUILT_MODULE_NAME, BUILT_MODULE_LOCATION,

 DEST_MODULE_NAME and DEST_MODULE_LOCATION and that the numbering should start at 0
 (eg. DEST_MODULE_NAME[0]="qla2200_6x" DEST_MODULE_NAME[1]="qla2300_6x").

 DEST_MODULE_LOCATION[#]=
 This directive specifies the destination where a module should be installed to,
 once compiled. It also is used for finding original_modules. This is a required
 directive, except as noted below. This directive must start with the text "/kernel"
 which is in reference to /lib/modules/<kernelversion>/kernel. Note that for each
 module within a dkms package, the numeric value of # must be the same for each of
 BUILT_MODULE_NAME, BUILT_MODULE_LOCATION, DEST_MODULE_NAME and DEST_MODULE_LOCATION
 and that the numbering should start at 0 (eg.
 DEST_MODULE_LOCATION[0]="/kernel/drivers/something/"
 DEST_MODULE_LOCATION[1]="/kernel/drivers/other/").

 DEST_MODULE_LOCATION is ignored on Fedora and Red Hat Enterprise Linux, Novell SuSE
 Linux Enterprise Server 10 and higher, Novell SuSE Linux 10.0 and higher, and
 Ubuntu. Instead, the proper distribution-specific directory is used.

 STRIP[#]=
 By default strip is considered to be "yes". If set to "no", DKMS will not run strip
 -g against your built module to remove debug symbols from it. STRIP[0] is used as
 the default for any unset entries in the STRIP array.

 PACKAGE_NAME=
 This directive is used to give the name associated with the entire package of
 modules. This is the same name that is used with the -m option when building,
 adding, etc. and may not necessarily be the same as the MODULE_NAME. This directive
 must be present in every dkms.conf.

 PACKAGE_VERSION=
 This directive is used to give the version associated with the entire package of
 modules being installed within that dkms package. This directive must be present in
 every dkms.conf.

 CLEAN= CLEAN specifies the make clean command to be used to clean up both before and after
 building the module. If unset, it is assumed to be "make clean".

 OBSOLETE_BY=
 This directive allows you to specify a kernel version that obsoletes the necessity
 for this particular DKMS module. This can be specified as a particular upstream
 kernel or an ABI bump of a kernel. For example, "2.6.24" would be an upstream
 kernel and "2.6.24-16" would represent an ABI bump for a kernel. Both are valid in
 this area.

 Please avoid the use of OBSOLETE_BY wherever possible. It's use indicates a lack of
 proper module versioning using MODULE_VERSION() tags in the module source itself.
 It is better to fix the MODULE_VERSION() tags than use OBSOLETE_BY. This also
 introduces a implicit distribution/version dependency on the package, as the value
 of OBSOLETE_BY is meaningful only in the context of a single distribution/version.

 If you feel you must use it, please use as such in dkms.conf:

https://manpages.ubuntu.com/file:/lib/modules/

 ubuntu_804="Ubuntu
 8.04"
 if [-x /usr/bin/lsb_release]; then
 if ["$(/usr/bin/lsb_release -sir)" == "${ubuntu_804}"]; then
 OBSOLETE_BY="2.6.25"
 fi
 fi

 PATCH[#]=
 Use the PATCH directive array to specify patches which should be applied to your
 source before a build occurs. All patches are expected to be in -p1 format and are
 applied with the patch -p1 command. Each directive should specify the filename of
 the patch to apply, and all patches must be located in the patches subdirectory of
 your source directory (/usr/src/<module>-<module-version>/patches/). If any patch
 fails to apply, the build will be halted and the rejections can be inspected in
 /var/lib/dkms/<module>/<module-version>/build/. If a PATCH should only be applied
 conditionally, the PATCH_MATCH[#] array should be used, and a corresponding regular
 expression should be placed in PATCH_MATCH[#] which will alert dkms to only use
 that PATCH[#] if the regular expression matches the kernel which the module is
 currently being built for.

 PATCH_MATCH[#]=
 See the above description for PATCH[#] directives. If you only want a patch applied
 in certain scenarios, the PATCH_MATCH array should be utilized by giving a regular
 expression which matches the kernels you intend the corresponding PATCH[#] to be
 applied to before building that module.

 AUTOINSTALL=
 If this directive is set to yes then the service
 /etc/rc.d/init.d/dkms_autoinstaller will automatically try to install this module
 on any kernel you boot into. See the section on dkms_autoinstaller for more
 information.

 BUILD_DEPENDS[#]=
 This optional directive is an array that allows you to specify other modules as
 dependencies for your module. Each array element should be the PACKAGE_NAME of
 another module that is managed by dkms. Do not specify a version or architecture in
 the dependency. Note that this directive is only advisory; missing or broken
 dependencies cause non-fatal warnings.

 BUILD_EXCLUSIVE_KERNEL=
 This optional directive allows you to specify a regular expression which defines
 the subset of kernels which DKMS is allowed to build your module for. If the kernel
 being built for does not match against this regular expression, the dkms build will
 error out. For example, if you set it as ="^2.4.*", your module would not be built
 for 2.6 kernels.

 BUILD_EXCLUSIVE_ARCH=
 This optional directive functions very similarly to BUILD_EXCLUSIVE_KERNEL except
 that it matches against the kernel architecture. For example, if you set it to

https://manpages.ubuntu.com/file:///usr/lib/w3m/cgi-bin/w3mman2html.cgi?lsb_release
https://manpages.ubuntu.com/file:///usr/lib/w3m/cgi-bin/w3mman2html.cgi?lsb_release
https://manpages.ubuntu.com/file:/usr/src/

 ="i.86", your module would not be built for ia32e, x86_64, amd64, s390, etc.

 POST_ADD=
 The name of the script to be run after an add is performed. The path should be
 given relative to the root directory of your source.

 POST_BUILD=
 The name of the script to be run after a build is performed. The path should be
 given relative to the root directory of your source.

 POST_INSTALL=
 The name of the script to be run after an install is performed. The path should be
 given relative to the root directory of your source.

 POST_REMOVE=
 The name of the script to be run after a remove is performed. The path should be
 given relative to the root directory of your source.

 PRE_BUILD=
 The name of the script to be run before a build is performed. The path should be
 given relative to the root directory of your source.

 PRE_INSTALL=
 The name of the script to be run before an install is performed. The path should be
 given relative to the root directory of your source. If the script exits with a
 non-zero value, the install will be aborted. This is typically used to perform a
 custom version comparison.

 DKMS.CONF VARIABLES
 Within your dkms.conf file, you can use certain variables which will be replaced at
 run-time with their values.

 $kernelver
 This variable can be used within a directive definition and during use, the actual
 kernel version in question will be substituted in its place. This is especially
 useful in MAKE commands when specifying which INCLUDE statements should be used
 when compiling your module (eg. MAKE="make all
 INCLUDEDIR=/lib/modules/${kernelver}/build/include").

 $kernel_source_dir
 This variable holds the value of the location of your kernel source directory.
 Usually, this will be /lib/modules/$kernelver/build , unless otherwise specified
 with the --kernelsourcedir option.

DKMS.CONF OVERRIDES

 You can override the module-provided dkms.conf files. Every time after a dkms.conf file is
 read, dkms will look for and read the following files in order:

https://manpages.ubuntu.com/file:/lib/modules/
https://manpages.ubuntu.com/file:/lib/modules/

 /etc/dkms/<module>.conf
 /etc/dkms/<module>-<module-version>.conf
 /etc/dkms/<module>-<module-version>-<kernel>.conf
 /etc/dkms/<module>-<module-version>-<kernel>-<arch>.conf

 You can use these files to override settings in the module-provided dkms.conf files.

/etc/dkms/framework.conf

 This configuration file controls how the overall DKMS framework handles. It is sourced in
 every time the dkms command is run. Mainly it can currently be used to set different
 default values for the variables.

 The file contains descriptions for each directive it supports.

 Additionally to /etc/dkms/framework.conf, any file matching the glob
 /etc/dkms/framework.conf.d/*.conf will be loaded as well.

 $dkms_tree, $source_tree, $install_tree, $tmp_location
 Control which folders DKMS uses for components and artifacts.

 $verbose
 Can be set to anything but a null value to enable verbose output in DKMS.

 $symlink_modules
 Controls whether binary modules are copied to /lib/modules or if only symlinks are
 created there. Note that these variables can also be manipulated on the command
 line with --dkmstree, --sourcetree, --installtree and --symlink-modules options.

 $autoinstall_all_kernels
 Used by the common postinst for DKMS modules. It controls if the build should be
 done for all installed kernels or only for the current and latest installed kernel.
 It has no command line equivalent.

 $sign_file
 This is the path of the sign-file kernel binary that is used to sign the kernel
 modules. The variable $kernelver can be used in path to represent the target kernel
 version. The path for the binary depends on the distribution.

 $mok_signing_key, $mok_certificate
 Location of the key and certificate files used for Secure boot. The variable
 $kernelver can be used in path to represent the target kernel version.
 mok_signing_key can also be a "pkcs11:..." string for PKCS#11 engine, as long as
 the sign_file program supports it.

 $modprobe_on_install
 Automatically load the built modules upon succesful installation.

https://manpages.ubuntu.com/file:/lib/modules

dkms_autoinstaller

 This boot-time service automatically installs any module which has AUTOINSTALL="yes" set
 in its dkms.conf file. The service works quite simply and if multiple versions of a module
 are in your system's DKMS tree, it will not do anything and instead explain that manual
 intervention is required.

AUTHOR

 Gary Lerhaupt, Emil Velikov, Simone Caronni, Xu Zhen

WEBPAGE

 https://github.com/dell/dkms

Powered by the Ubuntu Manpage Repository, file bugs in Launchpad

© 2019 Canonical Ltd. Ubuntu and Canonical are registered trademarks of Canonical

Ltd.

https://launchpad.net/ubuntu-manpage-repository
https://bugs.launchpad.net/ubuntu-manpage-repository/+filebug

